Skip to main content

MYP4 Chemistry- Evolution of atomic models- Ashveena Chaudhary

Objective of the Learning Engagement:

The objective of this learning engagement was to help students understand the evolution of atomic models (Dalton's, Thomson's, Rutherford's, and Bohr's) and reinforce their conceptual clarity through creative, hands-on model-making using everyday materials. It also aimed to foster collaboration, communication, and analytical skills.

Details of the Learning Engagement:

Date of Activity: 16th September 2024

This was a group activity where grade 9 Chemistry students were divided into teams, with each group assigned one of the four atomic models: Dalton's, Thomson's, Rutherford's, or Bohr's.

Each group was tasked with:

1. Researching their assigned atomic model to understand its features, scientific basis, and limitations.
2. Designing a physical model using available materials like paper, clay, or objects from their surroundings to represent the structure and characteristics of the model.
3. Highlighting key features of their model during a group presentation to explain its significance and evolution.

Impact of the engagement on students and reflection as a teacher:

This activity was highly effective in making complex concepts like atomic models more accessible and engaging. It was rewarding to see students collaborate, think critically, and use creativity to represent scientific ideas. As a teacher, I observed how practical, student-led tasks enhance retention and comprehension. For future sessions, I would include a structured feedback segment to ensure students can refine their explanations and connect models to real-world applications.

- Ashveena Chaudhary

Comments

Popular posts from this blog

The magic of AI Tutor -MYP 4 Physics- Sheeba Abraham

Objective of the Learning Engagement To reinforce key Physics concepts and improve conceptual clarity by using the Toddle AI Tutor for targeted revision, personalized questioning, and instant feedback, enabling students to identify misconceptions and strengthen their understanding in preparation for assessments.   Learning Engagement: The AI tutor feature on Toddle was introduced to me by Dr. Meetu Agarwal. As the time for revision approached, I decided to utilize this tool to kickstart the revision process. Upon logging into the Create AI Tutor feature, several options were available. I chose the Mastery Builder, where I input the syllabus for the upcoming Physics assessment. The AI then generated a set of instructions along with an AI rating scale, allowing students to be placed at different levels: Beginning, Emerging, Developing, and Mastery. Once the students were assigned their respective levels, the AI guided them with progressively more challenging questions. Upon submittin...

Beyond the Bill: A Math Lesson in International Dining MYP 2 - Vani Upadhyay

Objective of the Learning Engagement: Culinary Math Expedition: A Real World Adventure in Mathematics where students explored the intricacies of having a meal in a foreign country. Details of the Learning Engagement: In the ever-evolving landscape of education, finding creative ways to blend theoretical knowledge with practical application is key to fostering deeper understanding and engagement among students. Embark on a 'Culinary Math Expedition' a dynamic learning experience that takes students on a mathematical journey through the world of international dining, fostering a deeper understanding of how discounts and taxes affects the final amount of bill and currency conversion. The journey began with forming groups, or "dining tables," tasked with choosing a foreign country and finding a café or restaurant whose menu is available online. Action: The Math Behind the Meal Armed with a detailed handout, each group listed their selected menu items and prices. They dre...

Chemistry Mash-up Mania: Crafting chemistry with clay - MYP1- Prerna Karmarkar

Objective of the Learning Engagement: The objective of this activity is to help students understand and differentiate between elements, compounds, and mixtures through interactive and hands-on approaches. By creating and analyzing physical models using colored clay and participating in a role-play activity, students can visualize molecular structures, embody atomic interactions, and engage with abstract chemical concepts in a tangible and meaningful way, fostering deeper comprehension and retention. Details of the Learning Engagement: Project Task given: Students were assigned a task to create a 3D molecular model set using coloured clay balls to represent elements, compounds, and mixtures. Students worked in groups to construct and classify examples of each. Students will document their observations and reasoning for classifying models as elements, compounds, or mixtures in the provided reflection sheet. Analogical Connection: Students worked in groups to create 3D molecular models us...